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Scheme of Planar Solid Oxide Fuel
Cell (SOFC) Stack

Currenl Flow




Reactions in SOFC

*. Electrochemical reactions :
Cathode: Y2 O, + 2e- = O~
Anode: H, + O% = H,O + 2e-
Cell: H, + 20, = H,O

* Steam Reforming:
CH, + H,0=CO + 3 H,
*, Shift Reaction:
CO +H,0=CO, +H,



SOEC Stack Material Costs at
0.6 W/ecm?2 for 5 kW module

SOFC Material Cost Material Cost
Component for Current for Lower
SOFC Temp SOFC

Electrode

EE— $22.60/kW $22.60/kW

Interconnects $206.25/kW $10.00/kW

Total $228.85/kW $32.60/kW




Schematic Alloy Design for SOFC
Applications
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Adopted from £Z.5. Yang, K. wWeil, DM, Paxton, and JwW. Stevenson. 2002 Fuel Cell Seminar
fr. 552




Laboeratory Setup for Performing
Experiments in Simulated Environments
Using Tubular Specimens




Laboratory Setup for Performing
Experiments in Simulated Environments
Using Flat Specimens




Example of SOFC Power
Generation System
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nemical Stability

High-Temperature Corrosion / Oxidation

Resistance

Compatibility with Cell Components

& Electrical Performance Stability
Formation of Conductive Scale

Oxide Stability

& Mechanical / Structural Stabllity

Thermal Expansion Coefficient Match
Weld / Joint Stability




Experimental Conditions

M, + 1% H,, Pressure range is 50 to
150psi and Temp is 200 to S00°C _ _
inside (ID) Cyclic heating and
pressurization to a
maximum of 800°C
and 150psi over a

period of one year

Alr

Outside (OD)




SEM Microegraphs of Longitudinal
Outer Surface of Tube (Alr)




SEM Micrographs of Cross-section
ofi Outer Surface of Tube (Alr)




EDX Analysis of Longitudinal
Outer Surface of Tube (Alr)




XPS Analysis of Longitudinal
Outer Surface of Tube (Alr)
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XRD Analysis of Longitudinal
Outer Surface of Tube (Alr)




SEM Microegraphs of Longitudinal
Inner Surface of Tube (N, + 1% H.)




SEM Microegraphs of Longitudinal
Inner Surface of Tube (N, + 1% H.)




EDX Analysis of Longitudinal
Inner Surface of Tube (N, + 1% H.)




XPS Analysis of Longitudinal
Inner Surface of Tube (N, + 1% H.)
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XRD Analysis of Longitudinal
Inner Surface of Tube (N, + 1% H.)




Comparison of XPS Spectra for
Inner and Outer Surface
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Conclusions

# SEM surface analysis indicates uniform
formation of scales in air and N, + 1%
H, mixture

& XRD results show the presence of the
following crystalline oxides on both
sides: Fe;O, and Cr,0,. Fe,O,; was
found on the outer surface.




Conclusions (Cont.)

® Fe;0,and Cr,0, were the predominant
oxides formed on the inner surface; Fe,0O,
with traces of Cr,0O5 and Fe;O, were the
oxides formed on the outer surface.

& XPS results show the presence of Cr on the
Inner surface, and its significant reduction on
the outer surface. This may indicate Cr
evaporation from the outer surface.




Conclusions (Cont.)

# Oxide scales on the inner surface were
formed due to exposure of the material
to air during experiment setup.
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